IEEE Computational Intelligence Magazine

magazine

 

August 2020 CIS Magazin cover

The IEEE Computational Intelligence Magazine (CIM) publishes peer-reviewed articles that present emerging novel discoveries, important insights, or tutorial surveys in all areas of computational intelligence design and applications, in keeping with the Field of Interest of the IEEE Computational Intelligence Society (IEEE/CIS). Additionally, CIM serves as a media of communications between the governing body and its membership of IEEE/CIS. Authors are encouraged to submit papers on applications oriented developments, successful industrial implementations, design tools, technology reviews, computational intelligence education, and applied research.

Contributions should contain novel and previously unpublished material. The novelty will usually lie in original concepts, results, techniques, observations, hardware/software implementations, or applications, but may also provide syntheses or new insights into previously reported research. Surveys and expository submissions are also welcome. In general, material which has been previously copyrighted, published or accepted for publication will not be considered for publication; however, prior preliminary or abbreviated publication of the material shall not preclude publication in this journal.


Impact Score

CIM IS 2021JPG

Journal Citation Metrics Journal Citation Metrics such as Impact Factor, Eigenfactor Score™ and Article Influence Score™ are available where applicable. Each year, Journal Citation Reports© (JCR) from Thomson Reuters examines the influence and impact of scholarly research journals. JCR reveals the relationship between citing and cited journals, offering a systematic, objective means to evaluate the world's leading journals.  Find out more about IEEE Journal Rankings.

Current Special Issues

  • IEEE CIM Special Issue on "Computational Intelligence on Meta Learning for Smart Healthcare," Guest Editors: Ghulam Muhammad, Dongrui Wu, and Fakhri Karray. Submission Deadline: October 30, 2021. (Call for Papers)

 

Featured Paper

Evolutionary Transfer Optimization - A New Frontier in Evolutionary Computation Research
Kay Chen Tan, Liang Feng, and Min Jiang
IEEE Computational Intelligence Magazine (Volume: 16, Issue: 1, Feb. 2021)

Abstract: The evolutionary algorithm (EA) is a nature-inspired population-based search method that works on Darwinian principles of natural selection. Due to its strong search capability and simplicity of implementation, EA has been successfully applied to solve many complex optimization problems, which cannot be easily solved by traditional exact mathematical approaches, such as linear programming, quadratic programming, and convex optimization. Despite its great success, it is worth noting that traditional EA solvers start the search from scratch by assuming zero prior knowledge about the task at hand. However, as problems seldom exist in isolation, solving one problem may yield useful information for solving other related problems. There has been growing interest in conducting research on evolutionary transfer optimization (ETO) in recent years: a paradigm that integrates EA solvers with knowledge learning and transfer across related domains to achieve better optimization efficiency and performance. This paper provides an overview of existing works of ETO based on the type of problems being solved by these methods, which are ETO for Optimization in Uncertain Environment, ETO for Multitask Optimization, ETO for Complex Optimization, ETO for Multi/Many-Objective Optimization, and ETO for Machine Learning Applications. The paper also highlights some of the challenges faced in this emerging research field of computational intelligence and discusses some promising future research directions in ETO. It is hoped that the study presented in this paper can help to inspire the development of more advanced ETO methods and applications.

Index Terms: Deep learning, Evolutionary computation, Search problems, Linear programming, Quadratic programming, Task analysis, Optimization
IEEE Xplore Link: https://ieeexplore.ieee.org/document/9321762

Computational Intelligence Techniques for Combating COVID-19: A Survey
Vincent S. Tseng, Josh Jia-Ching Ying, Stephen T.C. Wong, Diane J. Cook, and Jiming Liu
IEEE Computational Intelligence Magazine (Volume: 15, Issue: 4, Nov. 2020)

Abstract: Computational intelligence has been used in many applications in the fields of health sciences and epidemiology. In particular, owing to the sudden and massive spread of COVID-19, many researchers around the globe have devoted intensive efforts into the development of computational intelligence methods and systems for combating the pandemic. Although there have been more than 200,000 scholarly articles on COVID-19, SARS-CoV-2, and other related coronaviruses, these articles did not specifically address in-depth the key issues for applying computational intelligence to combat COVID-19. Hence, it would be exhausting to filter and summarize those studies conducted in the field of computational intelligence from such a large number of articles. Such inconvenience has hindered the development of effective computational intelligence technologies for fighting COVID-19. To fill this gap, this survey focuses on categorizing and reviewing the current progress of computational intelligence for fighting this serious disease. In this survey, we aim to assemble and summarize the latest developments and insights in transforming computational intelligence approaches, such as machine learning, evolutionary computation, soft computing, and big data analytics, into practical applications for fighting COVID-19. We also explore some potential research issues on computational intelligence for defeating the pandemic.

Index Terms: Diseases, COVID-19, Pandemics, Viruses (medical), Data analysis, Computational intelligence, Coronaviruses, Research initiatives
IEEE Xplore Link: https://ieeexplore.ieee.org/document/9225219