Neural Architecture Search Based on Evolutionary
Algorithms with Fitness Approximation

Chao Pan and Xin Yao
Shenzhen Key Laboratory of Computational Intelligence,
University Key Laboratory of Evolving Intelligent Systems of Guangdong Province,
Department of Computer Science and Engineering,
Southern University of Science and Technology, Shenzhen 518055, China.
Email: 11930665 @mail.sustech.edu.cn, xiny @sustech.edu.cn

Abstract—Designing advanced neural architectures to tackle
specific tasks involves weeks or even months of intensive inves-
tigation by experts with extensive domain knowledge. In recent
years, neural architecture search (NAS) has attracted the interest
of many researchers due to its ability to automatically design
efficient neural architectures. Among all the search strategies,
evolutionary algorithms have achieved significant success as
derivative-free optimization algorithms. However, the tremendous
computational resource consumption of the evolutionary neural
architecture search dramatically restricts its application. In this
paper, we explore how to apply evolutionary algorithms based
on fitness approximation to neural architecture search and
propose NAS-EA-FA to accelerate the search. We exploit data
augmentation and diversity in neural architectures to enhance
the algorithm, and present NAS-EA-FA V2. Experiments show
that NAS-EA-FA V2 is at least five times faster than other state-
of-the-art neural architecture search algorithms like regularized
evolution and iterative neural predictor on NASBench-101, and it
is also the most effective and stable algorithm on NASBench-201
in our experiments. All the code used in this paper is available
at https://github.com/fzjcdt/NAS-EA-FA.

Index Terms—Neural Architecture Search, Evolutionary Algo-
rithm, Fitness Approximation, Diversity

I. INTRODUCTION

Deep learning [1] has achieved remarkable achievements in
many fields, such as image classification, speech recognition,
and machine translation. However, many of the advanced
neural architectures are designed manually by researchers,
which is time-consuming. Even experts with rich domain
knowledge should take weeks or even months to design a state-
of-the-art neural architecture capable of solving a specific task.

Therefore, neural architecture search (NAS) has gradually
attracted researcher’s attention. The search strategies in NAS
mainly include reinforcement learning (RL), evolutionary al-
gorithms (EAs), and gradient-based methods. The reinforce-
ment learning-based NAS methods [2] [3] regard the gener-
ation of neural architectures as the action of the agent, and
the accuracy on the validation dataset as the reward. The
gradient-based methods [4] [5] turn the search space into
a continuous space, and search the architectures based on
the gradient information. However, reinforcement learning-
based NAS methods typically consume large amounts of
computational resources, while the hyper-network constructed
by gradient-based methods require strong prior knowledge. For

gradient-based methods, there are also some disputes about the
weight sharing strategy [4].

As derivative-free optimization algorithms, evolutionary al-
gorithms have shown powerful capabilities to tackle complex
optimization problems [6], even the black-box optimization
problems in large-scale space. Thus, the idea of evolving
artificial neural networks has been widely explored for over 20
years [7]. With the development of deep learning, evolutionary
algorithms are further employed for neural architecture search,
and has achieved impressive results. The recent research shows
that the neural architecture search based on evolutionary
algorithm can converge faster in the early stage, and performs
not worse than the other algorithms in the later stage [8].

As with RL-based NAS, the tremendous resource consump-
tion of evolutionary neural architecture search greatly limits
its application. Therefore, this paper explores how evolutionary
algorithms based on fitness approximation can be applied to
NAS to reduce the number of evaluations and speed up the
search. A variety of techniques, including data augmentation
and diversity of neural architectures, were verified to be useful
in this paper and further applied to enhance the algorithm.
Experimental results on the NASBench-101 and NASBench-
201 datasets show that our algorithms (NAS-EA-FA and NAS-
EA-FA V2) converge faster than other SOTA NAS algorithms,
and are more efficient and stable.

The primary contributions of this paper are as follows:

o We propose NAS-EA-FA, an efficient framework for ap-
plying evolutionary algorithms with fitness approximation
to NAS, and verify that its effectiveness is competitive
with other state-of-the-art NAS algorithms.

o We further explain that data augmentation and enhanced
diversity contribute to the efficiency and stability of NAS-
EA-FA.

This paper is organized in the following order: the second
section is related work, presenting the baseline and SOTA
algorithms for comparison in our experiments. We propose the
NAS-EA-FA and NAS-EA-FA V2 in section three and verify
the benefits of data argumentation and high diversity of neural
architectures. Section four introduces how to encode the neural
architecture in the datasets NASBench-101 and NASBench-
201. Section five is the experimental settings and results, and
section six provides the conclusions.

II. RELATED WORKS

A. Random Search

The encoding method of the neural architecture directly
determines the search space, whereas the neural architecture
search algorithms are only to search for the optimal neural
architecture in the search space. Many prior knowledge, such
as skip-connection can be helpful in training deeper networks
[9], etc., can be added to the neural architecture encoding
methods to reduce the search space and improve the search
speed. However, these human biases also limit the ability of
neural architecture search algorithms to find novel and efficient
structures.

Thus, random search [10] is commonly served as a lower
bound baseline under a given encoding method or search space
to verify whether other neural architecture search algorithms
are significantly effective. It’s worth pointing out that random
search can be competitive when the search space is good
enough [10].

B. Evolutionary Neural Architecture Search

Evolutionary algorithms are a series of algorithms inspired
by natural evolution, such as evolutionary programming (EP),
evolutionary strategy (ES) and genetic algorithms (GAs),
which are characterized by population-based and stochasticity
[11]. Through mutation, crossover and selection operators,
evolutionary algorithms can tackle optimization problems ef-
fectively [6], even for the black-box optimization problems in
large-scale space.

There have been many studies combining evolutionary algo-
rithms and neural networks since 20 years ago [7]. With the
development of deep learning, evolutionary algorithms have
been further applied to neural architecture search [12]. From
the perspective of individual representation, the evolutionary
neural architecture search can be classified into two categories:
overall structural encoding and cell-based encoding. The for-
mer encodes the complete neural architecture as an individual,
while the latter encodes only the cell and the complete neural
architecture consists of a stack of identical cells.

1) Overall Structural Encoding: [13] employs the directed
acyclic graph to represent the whole neural architecture, which
is the first time that the evolutionary algorithm was applied to
the deep neural architecture search. 11 mutation operators were
proposed, including modifying the connection and the type of
node operations, while the crossover operators were verified to
contribute little to the search. Due to the large search space,
the algorithm was ran in parallel on 250 computers for 15
days. [14] divides the neural architecture into multiple stages
to reduce the search space and performs the search by a genetic
algorithm. The chain-structured neural architectures [15] can
be very well suited to crossover operators, but cannot represent
skip-connections. Therefore, many researchers commonly en-
capsulate multiple operations into blocks [16] [17] [18], such
as ResNet block, DenseNet block, etc.

2) Cell-based Encoding: Inspired by the fact that many
efficient artificially designed neural networks are composed
of stacks of identical cells [9] [19] [20], many researchers
have devised cell-only search algorithms to further reduce the
search space [8] [21]. [22] presents the hierarchical cell search
space where high-level motifs are made up of combinations
of low-level motifs. To maintain the diversity of the neural
architectures in population, [22] preserved all individuals and
applied tournament selection with tournament size of 5% of
the population size as the selection strategy. [23] divides cells
into normal cells and reduce cells, with only the latter affecting
the shape of the feature map. Aging strategy (regularized
evolution) has been proposed as the selection operator by
replacing the oldest individual in the population with a mutated
one to explore the larger search space [23]. Regularized
evolution found the first neural architecture (AmoebaNet-A)
that surpassed the hand-designs and was the best performing
algorithm in the experiments of [8]. Therefore, we also take
regularized evolution as a state-of-the-art baseline for compar-
ison in our experiments.

C. Neural Predictor and Fitness Approximation

Neural architecture search algorithms typically have to
evaluate a significant number of neural architectures, and
accurately evaluating a neural architecture consumes tremen-
dous computational resources (several or even dozens of GPU
hours). Therefore, many studies have proposed to predict
the performance of neural architectures by the performance
predictor (neural predictor).

[24] employs v-support vector machine regression (v-SVR)
as the neural predictor and has achieved promising results
in both natural language processing and computer vision
domains. [25] showed that decision tree-based models can
better process discrete data and gradient boosting decision tree
(GBDT) was adopted as the neural predictor. Graph convolu-
tional networks (GCN) are also applied to the representation
of neural architectures, and the resulting lower dimensional
vectors are then taken as input to the neural predictor [26].

An iterative neural predictor-based neural architecture
search algorithm is provided in Algorithm 1: in each iteration,
M neural architectures are randomly sampled and the top K
neural architectures with the highest prediction accuracy are
selected for real training and evaluation. Then, the obtained
results are added to the training data to train a new neural
predictor.

In evolutionary algorithms, it is generally necessary to
evaluate the fitness of a huge number of individuals. The
fitness of one single neural architecture is typically its accuracy
on the validation set. Accessing this information requires a
significant amount of computational resources. Similar to the
neural predictor, the fitness approximation model is employed
in evolutionary algorithms to approximate the real fitness of
an individual to reduce the number of evaluations [27].

Algorithm 1: Iterative Neural Predictor

Input: Number of architectures M to sample. Number of architectures K to evaluate. Number of iterations 7.

Output: A neural architecture.
1 X =Y ={}
2fort=1,...,T do
Train neural predictor f by X and Y.
Randomly sample M architectures to form X.

Train and evaluate the architectures with top K predicted accuracy in X, \ X to get X; and Y; .

X=xUx,y=yyy,
end
Output: The best neural architecture in X.

3
4
5 Predict the accuracy Y of the architectures X by f.
6
7
8

ITII. NAS-EA-FA

In this section, we demonstrate how the evolutionary al-
gorithm with fitness approximation can be applied to neural
architecture search, and present the NAS-EA-FA algorithm
(Algorithm 2). NAS-EA-FA consists of two core modules:
the fitness approximation update module(line 4-6) and the
evolutionary algorithm module (line 9-14). The representation
of neural architecture in the two modules is different. In order
to improve the performance of fitness approximation (FA)
model, the genotype of the individuals in the evolutionary
algorithm is refined before being used as training data for
FA, which is described in detail in section 4. We also apply
the same processes to the neural predictor-based algorithm to
ensure a fair comparison.

In NAS-EA-FA, K randomly sampled neural architectures
constitute the initial population, each with an initial fitness
of 0 (line 2). We take the accuracy of the neural architecture
on the validation set as the real fitness of the individual. In
each iteration, the K individuals in the population with the
highest fitness that have not been truly evaluated are evaluated
and added to X and Y (line 4-5). We train a new fitness
approximation f(X) — Y from scratch by X and Y (line
6), where the FA is typically a regression model. In the
evolutionary algorithm module, the g-generation population
P, is derived by mutation from the previous population P,_,
and the fitness of each individual is predicted by fitness
approximation f (line 9-13). All the individuals generated by
the evolutionary algorithm are stored in P’ and P is assigned
to Py at the end of the EA module (line 12-14). In the next
iteration, the K individuals with the highest predicted fitness
in Py(P") were evaluated.

From the description of the NAS-EA-FA algorithm, we can
observe that its performance is influenced by two parts: the
accuracy of the FA and the effectiveness of the EA. Therefore,
we further enhance the performance of NAS-EA-FA in terms
of data augmentation and the diversity of neural architectures,
and propose NAS-EA-FA V2 (Algorithm 3).

A. Data Argumentation

In general, the more training data, the better the FA model
will be. However, more training data also means more neural

architectures need to be evaluated, which consumes a great
deal of computational resources. We expect to be able to
generate some accurate data based on existing training data
without re-evaluation.

Each neural architecture may have a couple of isomor-
phisms that vary greatly in their representations, but have the
equivalent functionality, which means that their performance
is identical. Thus, when we evaluate a neural architecture, we
also get the performance of its isomorphisms, and we can
expand the training data of FA in this way. We generate all
isomorphisms of the neural architectures by permuting the
node order [8], and add all neural architectures to the FA
training data X (line 7-8 in Algo 3).

B. Diversity of the Neural Architectures

The active selection of training data tends to achieve
higher performance with the same amount of training data.
In the domain of active learning, many strategies have been
used to select training data, and increasing the diversity of
training data has been shown to be an effective approach
[28]. Therefore, we can increase the diversity of training
data for FA to enhance its performance. Also, in evolutionary
algorithms, higher population diversity contributes to locating
global optimal solutions and avoiding early convergence [29].

We represent the neural architectures as 01 sequences of
length n, and all evaluated neural architectures and their
isomorphisms are stored in X. For a neural architecture z,
we identify the neural architecture = in X that is most similar
to x/, and use the distance between z and z as the distance
between and X. The calculation formula is as follows:

D(X, 9:/) = iré%; 1(9:; # ;) (1)

Where 1(z) is 0-1 indicator function, when x is true, the
function value is 1, otherwise it is 0.

In each iteration of NAS-EA-FA V2, we evaluate not only
the K neural architectures with the highest fitness (line 4),
but also the H neural architectures with the largest distance
from the available training data X (line 5). The H neural
architectures with the greatest distance from the previously

Algorithm 2: NAS-EA-FA

Input: Number of architectures K to evaluate. Number of generations GG. Number of iterations 7.

Output: A neural architecture.

1 X =Y ={}

2 Py = Randomly sample K architectures with an initial fitness of 0.
sfort=1...,Tdo

4 Train and evaluate the individuals with top K predicted fitness in Py \ X to get X "and Y.
s | X=xUx,vy=vyYvy

6 Train fitness approximation f by X and Y.

7 Py = X' with fitness Y.

s | P={)

9 forg=1,...,Gdo

10 Generate Py from P;_; through evolutionary algorithm.

11 Predict the fitness of P, by f.

12 P =P P,

13 end

14 Py = P

15 end

Output: The best neural architecture in X.

evaluated neural architectures will be part of the initial popula-
tion in the next iteration (line 6), which will also be beneficial
for increasing the diversity of the population and exploring a
larger space.

C. Verification Experiments

We further demonstrate that data augmentation and higher
data diversity contribute to improve the performance of fitness
approximation model. We compare the performance of fitness
approximation model trained on random sampling, random
sampling with data argumentation and active selection based
on Eq. 1 under different training sample sizes.

In NAS-EA-FA, we are not concerned with the numerical
deviation of the FA predictions from the real results, but only
with the accuracy of the relative ranking. In other words, we
prefer the relative ranking of neural architecture performance
to be accurate than the small mean square error. Therefore,
in the experiment, we measure the performance of the fitness
approximation model by the mean number of reverse pairs
(MNRP). The range of MNRP is O to 1. The smaller the
MNRP, the more accurate the fitness approximation model.

For a sequence y of length n, if 4 < j and y; > y;, then
(vi,y;) is an inverse pair. We rank the set of neural architec-
tures X by their accuracy on the validation set from lowest to
highest, and the FA prediction for X is y. The average number
of reverse pairs in the sequence y is considered to evaluate the
performance of the fitness approximation model. The MNRP
is calculated as follows:

MNRP(y) = ~ S iwi>y) @

Where 1(x) is 0-1 indicator function and n is the number
of neural architectures in X.

0.325 4

—&— random sampling
random sampling with data argumentation
—J— active selecting based on diversity

0.300 4

0.275 4

0.250 4

MNRP

0.225 4

0.200 4

0.175 4

0.150 4

T T T T T
200 400 600 800 1000
number of training samples

Fig. 1. The influence of data argumentation and diversity on fitness approx-
imation model.

We adopte XGboost [30] with a learning rate of 0.1 as
the fitness approximation model, NASbench-101 [8] as the
dataset, and repeate the experiment 30 times. As shown in
Figure 1, the error of the fitness approximation model becomes
progressively lower as the training data increases. Compared
with random sampling, data augmentation can significantly
reduce MNRP when the amount of training data is relatively
small. The performance of actively selecting widely differing
neural architectures as training data is also not worse than
random sampling at any point. This experiment reveals that
data augmentation and higher diversity are indeed beneficial
to enhance the performance of fitness approximation model.

Algorithm 3: NAS-EA-FA V2

Input: Number of top architectures K to evaluate. Number of diversity architectures H to evaluate. Number of

generations GG. Number of iterations 7.
Output: A neural architecture.

1 X=Y =

2 By = Rand?mly sample K+H architectures with an initial fitness of 0.

sfort=1...,7Tdo

4 Train and evaluate the individuals with top K predicted fitness in Py \ X to get X "and Y.
5 Train and evaluate the individuals with top H distance to X in Py \ X to get X "and Y.
6 | Po=X UX" with fitness Y JY".

7 (X/,Y/) = All isomorphisms of (X/, Y/).

8 | (X",Y") = All isomorphisms of (X", Y").

v | X=XUXxX'Ux",y=vyyy yy”

10 Train fitness approximation f by X and Y.

u | P={

12 forg=1...,Gdo

13 Generate Py from P;_; through evolutionary algorithm.
14 Predict the fitness of P, by f.

15 P =P P,

16 end

17 Py = P

18 end

Output: The best neural architecture in X.

IV. DATASETS

Massive computational resources make it impractical to
compare different neural architecture search algorithms. Re-
cently, with the public of some NAS datasets, we can verify
the effectiveness of neural architecture search algorithms by
directly querying the performance information of neural archi-
tectures in a smaller search space.

A. NASBench-101

NASBench-101 [8] is the first publicly available NAS
dataset with 432K unique convolutional neural architectures.
The neural architecture in NASBench-101 consists of stacks
of identical cells, which is commonly used in many artificially
designed neural architectures [9] [19]. The cell is represented
by a directed acyclic graph (DAG) containing 7 nodes and up
to 9 edges, where 5 internal nodes are one of 1x1 convolution,
3x3 convolution and 3x3 maximum pooling. Each neural
architecture was trained three times on the CIFAR-10 dataset
with the same training parameters, allowing direct querying
of information such as validation accuracy, test accuracy and
training time.

We take the type of nodes and the upper triangular adjacency
matrix of the original cell as the genotype of the individ-
ual in the evolutionary algorithm. However, neural predictor
and fitness approximation are regression models that are not
suitable for taking discrete node-type data as input directly.
Therefore, we represent the neural architecture in NASBench-
101 by one-hot adjacency matrix encoding method [25] [26]
[31], and the resulting 01 sequences are presented as inputs

to the neural predictor and fitness approximation. As shown
in Figure 2, we first delete the invalid nodes in the DAG and
renumber the nodes. An invalid node implies that there is no
path from input to output passing through this node. The one-
hot encoding of the operations of the five internal nodes and
the upper triangular adjacency matrix constitute the sequence
of this cell. When the number of internal nodes is less than
5, empty nodes (none operation) are appended to ensure that
the sequence length is the same for each cell.

B. NASBench-201

NASBench-201 [21], like NASBench-101, is a cell-based
neural architecture dataset. However, in NASBench-201, the
number of nodes and edges of a cell is fixed to 4 and 6,
respectively, where nodes represent the sum of the feature
maps and edges represent one of the following operations:
1x1 convolution, 3x3 convolution, 3x3 average pooling, skip
connection, and zeroize. NASBench-201 contains 15,625 neu-
ral architectures, but only 8,764 unique neural architectures
remain after removing isomorphisms and invalid neural ar-
chitectures. Each neural architecture was trained three times
on the CIFAR-10, CIFAR-100 and ImageNet-16-120 datasets,
and NASBench-201 provides various data for each epoch of
the model under each training, including the training time,
accuracy, etc.

In NASBench-201, since all DAGs are densely connected,
no additional encoding of the adjacency matrix of the neural
architecture is expected. The genotype of the individual in the
evolutionary algorithm is the type of 5 nodes in original cell.
When generating the input (cell sequence) for neural predictor

| 1x1(1) | | 3x3(5) | | MP(4) |

Original cell

|1><1(1)| |3x3(4)|

Simplified cell

Cell sequence: 001 010 100010000
Encoding of nodes

Genotype: 1x1, MP, 3x3, MP, 3x3
Node ops of original cell

0,1,1,1,0,0,0
0,0,0,0,0,1,0

0,0,0,0,1,0,0 I1x1: [0,0,1]
0,0,0,0,0,1,0 3x3: [0, 1, 0]
0,0,0,0,0,1,0 MP: [L,0,0]
0,0,0,0,0,0,0 None: [0, 0, 0]
0,0,0,0,0,0,0

Adjacency matrix One-hot encoding of ops

111000000100100010100

Upper triangular adjacency matrix

11110000001 000001001 1

Upper triangular adjacency matrix of original cell

Fig. 2. An illustration of cell sequence generation and genotype representation of NASBench-101.

and fitness approximation, we will first simplified the cell. As
shown in Figure 3, for the node whose input feature maps
are all zero, we modify all the operations on its out-edges to
zeroize. The simplified cell is functionally equivalent to the
original cell. Then, the stack of one-hot encoding for each
edge forms the sequence of this cell.

V. EXPERIMANTS

A. Experimental Settings

In all the neural architecture search algorithms, if a neural
architecture or its isomorphisms have been evaluated, there is
no need to re-evaluate it, which can greatly reduce computa-
tional consumption. However, graph isomorphism problem is
an NP problem, and the brute force solution is very expensive.
Hence, we map the neural architecture to a hash value by the
iterative graph hashing algorithm [32] [8] to determine whether
two neural architectures are isomorphic under tolerable errors.
When the hash value of a neural architecture to be queried has
been recorded, its performance information can be obtained
directly without any cost. In our experiments, we utilize
this strategy for all neural architecture search algorithms to
guarantee a fair comparison.

[25] proposed that gradient boosting decision tree (GBDT)
is effective in NAS, so we use XGBoost [30], an elegant
implementation of GBDT, as the regression model for neural
predictor and fitness approximation. We follow the default
parameters in XGBoost, except that the learning rate is set
to 0.1. In regularized evolution (RE) and NAS-EA-FA, we
follow the setting in [23] [8]. Tournament selection with the
tournament size of 20% of the population size is employed as
the selection strategy, while only bit wise mutation is applied
to generate offsprings. Other parameters used in this paper are
provided in table L.

When querying the performance of the neural architecture,
the accuracy on the validation set is randomly selected from
several runs. The performance information for the test set is
not available during the run. We take the average accuracy of

TABLE I
EXPERIMENTAL PARAMETER SETTINGS

Dataset Parameter Value
Time budget 6000000s
Population size 100
Tournament size 20%
Ops mutation rate %
NASBench-101 Connection mutation rate %
M in Algo 1 10000
K in Algo 1 and 2 50
K and H in Algo 3 30 and 20
G in Algo 2 and 3 10
Time budget (CIFAR10) 200000s
Time budget (CIFAR100) 500000s
Time budget (ImageNet16-120) | 2000000s
Population size 10
NASBench-201 Tourname'nt size 201%
Ops mutation rate 5
M in Algo 1 1000
K in Algo 1 and 2 5
K and H in Algo 3 3 and 2
G in Algo 2 and 3 10

multiple runs on the test set as the final performance of the
neural architecture [26] [25].

All neural architecture search algorithms were run indepen-
dently for 300 times, costing a total of 458 GPU years, and this
experiment was only possible by relying on the NASBench101
and NASBench201 datasets.

B. Experimental Results

Figure 4 shows that, compared to random search, other
neural architecture search algorithms are significantly more
advanced in terms of convergence speed and final result.
NAS-EA-FA approaches convergence at one million seconds,
which is at least five times faster than other state-of-the-
art algorithms, such as regularized evolution and iterative

,'ieroize(O)

®

h
N ‘\zeroize(3)
HEN

\ zeroize(4i

zeroize(0)

Original cell

Simplified cell

Avg-pool:

One-hot encoding of ops

Cell sequence(encoding of edges): 0000 0001 1000 0000 0000 0010

Genotype(edge ops of original cell): zeroize, 1x 1 conv, skip-con, 3 X3 conv, avg-pool, 3%x3 conv

Fig. 3. An illustration of cell sequence generation and genotype representation of NASBench-201.

nas101-cifarl0 validation set

95.2 1

95.1

95.0 1

®
g 949
S
S
I+
©
o %8
©
5
94.7 4
94.6 —— improved random search
improved regularized evolution
4.5 —— iterative neural predictor
— nas-ea-fa
—— nas-ea-fa v2
94.4

0 1000000 2000000 3000000 4000000 5000000 6000000
training time(seconds)

nasl01-cifarl0 test set
94.3

94.2

94,1

g 8 g
-] o [=]

test accuracy %

©
w
~

93.6 improved random search

—— improved regularized evolution
—— iterative neural predictor

— nas-ea-fa

—— nas-ea-fa v2

93.4

T T T T T T T
0 1000000 2000000 3000000 4000000 5000000 6000000
training time(seconds)

Fig. 4. Average accuracy of 300 runs on NASBench-101. The shaded area represents the results from the top 25% to the top 75% in 300 runs.

neural predictor. The terminal results of NAS-EA-FA and
NAS-EA-FA V2 were similar, but NAS-EA-FA V2 converges
faster because data augmentation and higher diversity making
fitness approximation more accurate in the early stage. The
final accuracy of the NAS-EA-FA V2 is 95.12%=0.06 on the
CIFAR-10 validation set and 94.15%=0.15 on the test set.

In Table II, it can be observed that it is beneficial to avoid
duplicate evaluation of neural architectures by querying their
unique hash value. In particular, the improved regularized
evolution is significantly better than the original regularized
evolution in terms of average accuracy and standard deviation.
NAS-EA-FA V2 not only achieved the best results on all data
sets of NASBench-201, but also has the smallest standard
deviation, indicating that NAS-EA-FA V2 is indeed effective
and stable.

VI. CONCLUSION

In this paper, we explore how to apply evolutionary algo-
rithms based on fitness approximation to neural architecture

search and propose NAS-EA-FA and NAS-EA-FA V2. We
further exploit the isomorphism of neural architecture to do
data augmentation, and verify the importance of the diversity
for fitness approximation model. Both techniques have been
shown to be effective for fitness approximation model. In
our experiments, NAS-EA-FA V2 performs at least five times
faster than other state-of-the-art neural architecture search
algorithms on NASBench-101, and it is also the most effective
and stable algorithm on NASBench-201. Future work includes
applying the approximation model to other components of
evolutionary neural architecture search, such as mutation,
crossover and initialization.

VII. ACKNOWLEDGEMENT
This work is supported by the IEEE Computational Intelli-
gence Society Graduate Student Research Grant 2020.
REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, pp. 436444, 2015.

TABLE 11

EXPERIMENTAL RESULTS ON NASBENCH-201

NAS Methods CIFAR10 CIFAR100 ImageNet16-120
Validation(%) Test(%) Validation(%) Test(%) Validation(%) Test(%)

Random Search 91.07+0.28 90.68+0.34 71.60+0.80 71.41+0.94 45.81+0.56 45.48+0.68

Regularized Evolution 91.13+0.37 90.69+0.42 71.82+0.87 71.50+£0.96 46.22+0.55 45.71+0.66

Improved Random Search 91.10£0.26 90.70+0.30 71.72+0.77 71.50+0.88 45.9+0.51 45.57£0.65

Improved Regularized Evolution | 91.33+0.26 90.94+0.32 72.38+0.81 72.10+0.90 46.49+0.44 45.95+0.56

Iterative Neural Predictor 91.34+0.38 90.86+0.39 72.65+0.87 72.23£1.04 46.72+0.51 46.04+0.57

NAS-EA-FA 91.39+0.38 90.91+0.40 72.68+0.92 72.26+1.11 46.70£0.46 46.02+0.52
NAS-EA-FA V2 91.55+0.21 | 91.08+0.24 | 73.09+0.64 | 72.76+0.76 | 46.90+0.28 | 46.28+0.39

[2]

[3]
[4]
[5]

[6]

[7]
[8]

[9]

[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

[18]

[19]

[20]

B. Baker, O. Gupta, N. Naik, and R. Raskar, “Designing neural
network architectures using reinforcement learning,” arXiv preprint
arXiv:1611.02167, 2016.

B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” arXiv preprint arXiv:1611.01578, 2016.

H. Liu, K. Simonyan, and Y. Yang, “Darts: Differentiable architecture
search,” arXiv preprint arXiv:1806.09055, 2018.

R. Luo, E Tian, T. Qin, E. Chen, and T.-Y. Liu, “Neural architecture
optimization,” in Advances in neural information processing systems,
pp. 7816-7827, 2018.

X. Yao, Y. Liu, and G. Lin, “Evolutionary programming made faster,”
IEEE Transactions on Evolutionary computation, vol. 3, no. 2, pp. 82—
102, 1999.

X. Yao, “Evolving artificial neural networks,” Proceedings of the IEEE,
vol. 87, no. 9, pp. 1423-1447, 1999.

C. Ying, A. Klein, E. Real, E. Christiansen, K. Murphy, and F. Hut-
ter, “Nas-bench-101: Towards reproducible neural architecture search,”
arXiv preprint arXiv:1902.09635, 2019.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 770-778, 2016.

L. Li and A. Talwalkar, “Random search and reproducibility for neural
architecture search,” in Uncertainty in Artificial Intelligence, pp. 367—
377, PMLR, 2020.

T. Back, Evolutionary algorithms in theory and practice: evolution
strategies, evolutionary programming, genetic algorithms. Oxford uni-
versity press, 1996.

Y. Liu, Y. Sun, B. Xue, M. Zhang, and G. Yen, “A survey on evolutionary
neural architecture search,” arXiv preprint arXiv:2008.10937, 2020.

E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, Q. Le, and
A. Kurakin, “Large-scale evolution of image classifiers,” arXiv preprint
arXiv:1703.01041, 2017.

L. Xie and A. Yuille, “Genetic cnn,” in Proceedings of the IEEE
international conference on computer vision, pp. 1379-1388, 2017.

T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search: A
survey,” arXiv preprint arXiv:1808.05377, 2018.

Y. Sun, B. Xue, M. Zhang, G. G. Yen, and J. Lv, “Automatically
designing cnn architectures using the genetic algorithm for image
classification,” IEEE Transactions on Cybernetics, 2020.

Y. Sun, B. Xue, M. Zhang, and G. G. Yen, “Automatically evolving cnn
architectures based on blocks,” arXiv preprint arXiv:1810.11875, 2018.
M. Suganuma, S. Shirakawa, and T. Nagao, “A genetic programming
approach to designing convolutional neural network architectures,” in
Proceedings of the genetic and evolutionary computation conference,
pp. 497-504, 2017.

G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pp. 4700-4708, 2017.
C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proceedings of the

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

[31]

[32]

IEEE conference on computer vision and pattern recognition, pp. 2818—
2826, 2016.

X. Dong and Y. Yang, “Nas-bench-102: Extending the scope of repro-
ducible neural architecture search,” arXiv preprint arXiv:2001.00326,
2020.

H. Liu, K. Simonyan, O. Vinyals, C. Fernando, and K. Kavukcuoglu,
“Hierarchical representations for efficient architecture search,” arXiv
preprint arXiv:1711.00436, 2017.

E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evolution
for image classifier architecture search,” in Proceedings of the aaai
conference on artificial intelligence, vol. 33, pp. 4780-4789, 2019.

B. Baker, O. Gupta, R. Raskar, and N. Naik, “Accelerating neu-
ral architecture search using performance prediction,” arXiv preprint
arXiv:1705.10823, 2017.

R. Luo, X. Tan, R. Wang, T. Qin, E. Chen, and T.-Y. Liu, “Neural
architecture search with gbdt,” arXiv preprint arXiv:2007.04785, 2020.
W. Wen, H. Liu, Y. Chen, H. Li, G. Bender, and P.-J. Kindermans, ‘“Neu-
ral predictor for neural architecture search,” in European Conference on
Computer Vision, pp. 660-676, Springer, 2020.

Y. Jin, “A comprehensive survey of fitness approximation in evolutionary
computation,” Soft computing, vol. 9, no. 1, pp. 3-12, 2005.

K. Brinker, “Incorporating diversity in active learning with support
vector machines,” in Proceedings of the 20th international conference
on machine learning (ICML-03), pp. 59-66, 2003.

D. Sudholt, “The benefits of population diversity in evolutionary algo-
rithms: a survey of rigorous runtime analyses,” in Theory of Evolutionary
Computation, pp. 359—404, Springer, 2020.

T. Chen, T. He, M. Benesty, V. Khotilovich, and Y. Tang, “Xgboost:
extreme gradient boosting,” R package version 0.4-2, pp. 1-4, 2015.
C. White, W. Neiswanger, S. Nolen, and Y. Savani, “A study on en-
codings for neural architecture search,” Advances in Neural Information
Processing Systems, vol. 33, 2020.

C. Ying, “Enumerating unique computational graphs via an iterative
graph invariant,” arXiv preprint arXiv:1902.06192, 2019.

